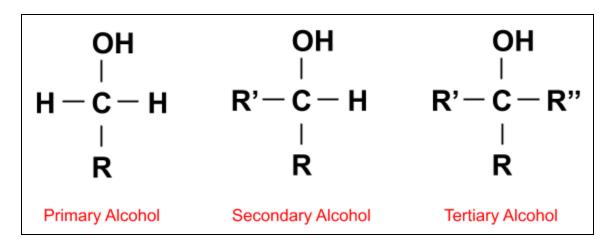


# **WJEC Chemistry A-level**

# 4.3: Alcohols and Phenols

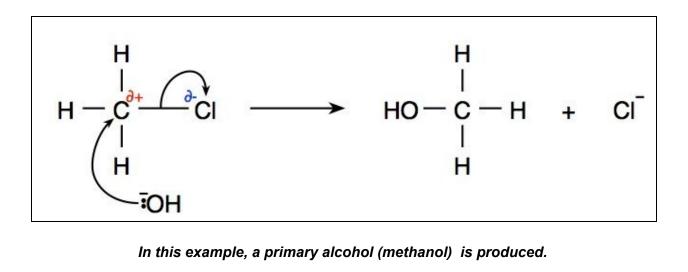
Detailed Notes Welsh Specification

This work by PMT Education is licensed under CC BY-NC-ND 4.0









## **Primary and Secondary Alcohols**

Alcohols can be **primary (1°), secondary (2°) or tertiary (3°)** depending on the position of the -OH functional group, relative to the rest of the compound. R groups represent basic hydrocarbon chains of any length and are often used when representing different degrees of alcohol as a simplification:



**Primary and secondary** alcohols can be formed by **nucleophilic substitution** reactions by reacting halogenoalkanes with an aqueous hydroxide. They can also be produced from carbonyl compounds by **nucleophilic addition** reactions.

#### Mechanism - Nucleophilic Substitution











In this example, a secondary alcohol (2-bromopropan-2-ol) is produced.

#### **Reduction of Carbonyl Compounds**

Primary and secondary alcohols can also be formed by the **reduction** of **carbonyl compounds**.

Aldehydes and ketones can both be reduced by NaBH<sub>4</sub> dissolved in water with methanol. This is the reducing agent which provides the H<sup>-</sup> ion for the reaction. Aldehydes are reduced to primary alcohols whereas ketones are reduced to secondary alcohols:

# $CH_{3}CHO + 2[H] \rightarrow CH_{3}CH_{2}OH$ $CH_{3}COCH_{3} + 2[H] \rightarrow CH_{3}CH(OH)CH_{3}$

**Carboxylic acids** can also be reduced to primary alcohols, but they require a **stronger reducing agent**. **LiAIH**<sub>4</sub> is the reducing agent used for the reduction of carboxylic acids:

# $CH_3COOH + 4[H] \rightarrow CH_3CH_2OH + H_2O$

The mechanism for these reactions is **nucleophilic addition**. This is the same as the mechanism above - except that the bromide ion is a  $H^{-}$  ion.





### **Reactions of Alcohols**

In primary and secondary alcohols, the **-OH** functional group is available to react with various different compounds, making it useful for **organic synthesis** reactions.

#### **Reactions with Hydrogen Halides**

Alcohols can undergo a **nucleophilic substitution** reaction with **hydrogen halides** to produce a **halogenoalkane**. This is due to the **high polarity** of the H-Halide bond that results in the halide being able to act as a nucleophile.

#### Hydrogen chloride

The reaction of primary and secondary alcohols with hydrogen chloride requires an **anhydrous zinc chloride catalyst**.

 $\rm CH_3\rm CH_2\rm OH + \rm HCI \rightarrow \rm CH_3\rm CH_2\rm CI + \rm H_2\rm O$ 

#### Hydrogen bromide

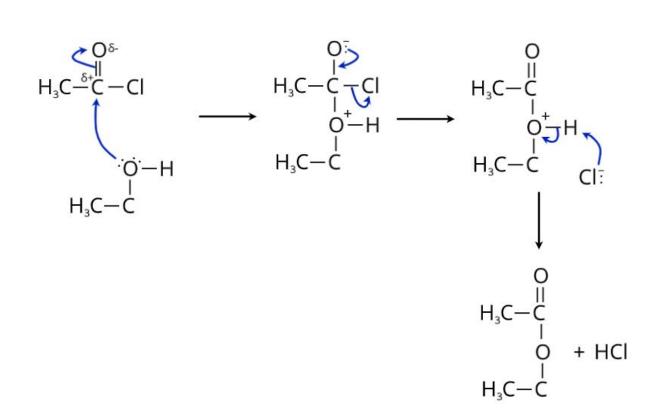
To react hydrogen bromide with an alcohol, **potassium bromide** is first added to the alcohol, followed by **concentrated sulfuric acid**. This produces the **hydrogen bromide in-situ**. This then reacts with the alcohol to produce a bromoalkane.

 $CH_{3}CH(OH)CH_{3} + HBr \rightarrow CH_{3}CHBrCH_{3} + H_{2}O$ 

#### Hydrogen iodide

To react hydrogen iodide with an alcohol, **potassium iodide** is first added to the alcohol, followed by **concentrated phosphoric(V) acid**,  $H_3PO_4$ . This produces the hydrogen iodide in-situ which reacts with the alcohol to produce an iodoalkane. Phosphoric acid is used instead of sulfuric acid because the **sulfuric acid would oxide the iodide ions** to iodine, reducing the **yield of hydrogen iodide**.

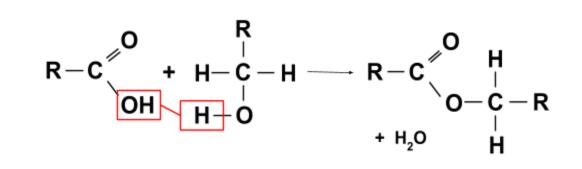
 $\rm CH_3\rm CH_2\rm OH + \rm HI \rightarrow \rm CH_3\rm CH_2\rm I + \rm H_2\rm O$ 


#### **Reactions with Ethanoyl Chloride**

Ethanoyl chloride is a type of **acyl chloride**. These are derivatives of carboxylic acids, where the -OH group has been replaced with a **chlorine atom**. This makes for a **very polar** functional group that can react violently with **alcohols** to produce **esters**. Acyl chlorides react with alcohols in **nucleophilic addition elimination** reactions.






*Example - Nucleophilic addition elimination of ethanoyl chloride with ethanol to produce ethyl ethanoate:* 



#### **Reactions with Carboxylic Acids**

Carboxylic acids can react with **alcohols** in the presence of a **strong acid catalyst** to form **esters**. **Concentrated sulfuric acid** is commonly used as the acid catalyst. This process is called **esterification** and is carried out under **reflux**.

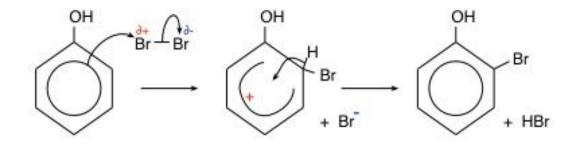
Example:



Esters are **sweet smelling compounds** used in food flavourings and perfumes. They have low boiling points and also make good **solvents** for use with other polar molecules.

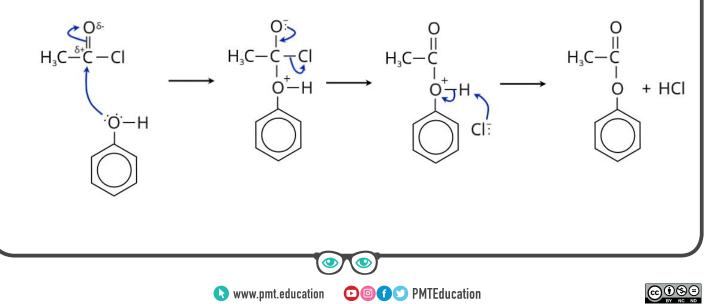





## Phenol

Phenol is an **aromatic alcohol** consisting of a benzene ring and an -OH alcohol group. It is **weakly acidic** with a pH between 5 and 6. When phenol loses a hydrogen ion, the **lone pair** on the oxygen atom overlaps with the **delocalised electron system** of benzene. This spreads the charge out, **stabilising the phenoxide ion**. This makes phenol acidic since the more stable the ion is, the more likely it is to form.

Phenol can undergo reactions with **halides** to produce **aromatic halogenoalkanes** and reacts with **acyl chlorides** to produce **aromatic esters**.


#### **Electrophilic Substitution**

The electron rich delocalised ring in phenol causes the polarisation of the bromine molecule. This makes it susceptible to electrophilic attack. Electrophilic substitution can then occur, producing an aromatic halogeno-alcohol.



#### Reaction with ethanoyl chloride

**Phenol** reacts with ethanoyl chloride in a very similar way to how aliphatic alcohols react with ethanoyl chloride. Due to the **stability** of the **benzene ring**, phenol does not react as readily with ethanoyl chloride, since the **lone pair** of electrons on the oxygen are overlapping with the electron system, making them **less available**. The product of this **nucleophilic addition elimination** reaction is an **aromatic ester**:





#### **Test for Phenol**

**Aqueous ferric chloride** (FeCl<sub>3</sub>) can be used to **test for phenols**. Compounds containing phenols will cause the solution to turn a vivid purple, blue, green or red colour - depending on the **nature of the phenols**. In particular, if **phenol** itself is present, the solution will turn a vivid **violet-purple** colour on the addition of ferric chloride solution.

